Braiana A. Díaz-Herrera, Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
Edgar Roman-Rangel, Departamento Académico de Computación, Instituto Tecnológico Autónomo de México (ITAM), Ciudad de México, México
Carlos A. Castro-García, Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
Daniel Sierra-Lara Martinez, Cuidados Coronarios y Urgencias, Instituto Nacional de Cardiología, Mexico City, Mexico
Rodrigo Gopar-Nieto, Cuidados Coronarios y Urgencias, Instituto Nacional de Cardiología, Mexico City, Mexico
Karen G. Velez-Talavera, Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
María P. Espinosa-Martínez, Coordinación de Nuevas Tecnologías, Fundación Mexicana para la Salud (FUNSALUD), Ciudad de México, México
Santiago March-Mifsut, Coordinación de Nuevas Tecnologías, Fundación Mexicana para la Salud (FUNSALUD), Ciudad de México, México
Ximena Latapi-Ruiz-Esparza, Cuidados Coronarios y Urgencias, Instituto Nacional de Cardiología, Mexico City, Mexico
Óscar U. Preciado-Gutiérrez, Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
Santiago Alba-Valencia, Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
Héctor A. Santos-Alfaro, Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
Hector González-Pacheco, Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
Alexandra Arias-Mendoza, Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
Diego Araiza-Garaygordobil, Cuidados Coronarios y Urgencias, Instituto Nacional de Cardiología, Mexico City, Mexico
Objectives: We aimed to assess the performance of an artificial intelligence–electrocardiogram (AI-ECG)-based model capable of detecting acute coronary occlusion myocardial infarction (ACOMI) in the setting of patients with acute coronary syndrome (ACS). Methods: This was a prospective, observational, longitudinal, and single-center study including patients with the initial diagnosis of ACS (both ST-elevation acute myocardial infarction [STEMI] & non-ST-segment elevation myocardial infarction [NSTEMI]). To train the deep learning model in recognizing ACOMI, manual digitization of a patient’s ECG was conducted using smartphone cameras of varying quality. We relied on the use of convolutional neural networks as the AI models for the classification of ECG examples. ECGs were also independently evaluated by two expert cardiologists blinded to clinical outcomes; each was asked to determine (a) whether the patient had a STEMI, based on universal criteria or (b) if STEMI criteria were not met, to identify any other ECG finding suggestive of ACOMI. ACOMI was defined by coronary angiography findings meeting any of the following three criteria: (a) total thrombotic occlusion, (b) TIMI thrombus grade 2 or higher + TIMI grade flow 1 or less, or (c) the presence of a subocclusive lesion (> 95% angiographic stenosis) with TIMI grade flow < 3. Patients were classified into four groups: STEMI + ACOMI, NSTEMI + ACOMI, STEMI + non-ACOMI, and NSTEMI + non-ACOMI. Results: For the primary objective of the study, AI outperformed human experts in both NSTEMI and STEMI, with an area under the curve (AUC) of 0.86 (95% confidence interval [CI] 0.75-0.98) for identifying ACOMI, compared with ECG experts using their experience (AUC: 0.33, 95% CI 0.17-0.49) or under universal STEMI criteria (AUC: 0.50, 95% CI 0.35-0.54), (p value for AUC receiver operating characteristic comparison < 0.001). The AI model demonstrated a PPV of 0.84 and an NPV of 1.0. Conclusion: Our AI-ECG model demonstrated a higher diagnostic precision for the detection of ACOMI compared with experts and the use of STEMI criteria. Further research and external validation are needed to understand the role of AI-based models in the setting of ACS.
Keywords: Occlusion myocardial infarction. NSTEMI. Artificial intelligence. Acute coronary syndrome. Deep learning. Transfer learning.